In this vignette, I’ll walk through how to get started with a basic dynasty value analysis on Sleeper.

We’ll start by loading the packages:

In Sleeper, unlike in other platforms, it’s very unlikely that you’ll remember the league ID - both because most people use the mobile app, and because it happens to be an 18 digit number! It’s a little more natural to start analyses from the username, so let’s start there!

solarpool_leagues <- sleeper_userleagues("solarpool",2020)
#> Using request.R from "ffscrapr"
#> No encoding supplied: defaulting to UTF-8.
#> No encoding supplied: defaulting to UTF-8.

head(solarpool_leagues)
#> # A tibble: 3 x 4
#>   league_name                   league_id        franchise_name franchise_id    
#>   <chr>                         <chr>            <chr>          <chr>           
#> 1 z_dynastyprocess-test         633501761776197… solarpool      202892038360801…
#> 2 The JanMichaelLarkin Dynasty… 522458773317046… solarpool      202892038360801…
#> 3 DLP Dynasty League            521379020332068… DLP::thoriyan  202892038360801…

Let’s pull the JML league ID from here for analysis, and set up a Sleeper connection object.

jml_id <- solarpool_leagues %>% 
  filter(league_name == "The JanMichaelLarkin Dynasty League") %>% 
  pull(league_id)

jml_id # For quick analyses, I'm not above copy-pasting the league ID instead!
#> [1] "522458773317046272"

jml <- sleeper_connect(season = 2020, league_id = jml_id)

jml
#> <Sleeper connection 2020_522458773317046272>
#> List of 5
#>  $ platform : chr "Sleeper"
#>  $ season   : num 2020
#>  $ user_name: NULL
#>  $ league_id: chr "522458773317046272"
#>  $ user_id  : NULL
#>  - attr(*, "class")= chr "sleeper_conn"

I’ve done this with the sleeper_connect() function, although you can also do this from the ff_connect() call - they are equivalent. Most if not all of the remaining functions after this point are prefixed with “ff_”.

Cool! Let’s have a quick look at what this league is like.

jml_summary <- ff_league(jml)
#> No encoding supplied: defaulting to UTF-8.

str(jml_summary)
#> tibble[,15] [1 × 15] (S3: tbl_df/tbl/data.frame)
#>  $ league_id      : chr "522458773317046272"
#>  $ league_name    : chr "The JanMichaelLarkin Dynasty League"
#>  $ league_type    : chr "dynasty"
#>  $ franchise_count: num 12
#>  $ qb_type        : chr "1QB"
#>  $ idp            : logi FALSE
#>  $ scoring_flags  : chr "0.5_ppr"
#>  $ best_ball      : logi FALSE
#>  $ salary_cap     : logi FALSE
#>  $ player_copies  : num 1
#>  $ years_active   : chr "2019-2020"
#>  $ qb_count       : chr "1"
#>  $ roster_size    : int 25
#>  $ league_depth   : num 300
#>  $ prev_league_ids: chr "386236959468675072"

Okay, so it’s the JanMichaelLarkin Dynasty League, it’s a 1QB league with 12 teams, half ppr scoring, and rosters about 300 players.

Let’s grab the rosters now.

jml_rosters <- ff_rosters(jml)
#> No encoding supplied: defaulting to UTF-8.
#> No encoding supplied: defaulting to UTF-8.
#> No encoding supplied: defaulting to UTF-8.
#> No encoding supplied: defaulting to UTF-8.

head(jml_rosters)
#> # A tibble: 6 x 7
#>   franchise_id franchise_name player_id player_name     pos   team    age
#>   <chr>        <chr>          <chr>     <chr>           <chr> <chr> <dbl>
#> 1 1            Paper Champs   2025      Albert Wilson   WR    MIA    28.8
#> 2 1            Paper Champs   4089      Gerald Everett  TE    SEA    26.8
#> 3 1            Paper Champs   6068      Devine Ozigbo   RB    JAX    24.5
#> 4 1            Paper Champs   1339      Zach Ertz       TE    PHI    30.4
#> 5 1            Paper Champs   5068      Kerryon Johnson RB    DET    23.8
#> 6 1            Paper Champs   5965      Miles Boykin    WR    BAL    24.5

Values

Cool! Let’s pull in some additional context by adding DynastyProcess player values.

player_values <- dp_values("values-players.csv")
#> No encoding supplied: defaulting to UTF-8.

# The values are stored by fantasypros ID since that's where the data comes from. 
# To join it to our rosters, we'll need playerID mappings.

player_ids <- dp_playerids() %>% 
  select(sleeper_id,fantasypros_id)
#> No encoding supplied: defaulting to UTF-8.

player_values <- player_values %>% 
  left_join(player_ids, by = c("fp_id" = "fantasypros_id")) %>% 
  select(sleeper_id,ecr_1qb,ecr_pos,value_1qb)

# Drilling down to just 1QB values and IDs, we'll be joining it onto rosters and don't need the extra stuff

jml_values <- jml_rosters %>% 
  left_join(player_values, by = c("player_id"="sleeper_id")) %>% 
  arrange(franchise_id,desc(value_1qb))

head(jml_values)
#> # A tibble: 6 x 10
#>   franchise_id franchise_name player_id player_name    pos   team    age ecr_1qb
#>   <chr>        <chr>          <chr>     <chr>          <chr> <chr> <dbl>   <dbl>
#> 1 1            Paper Champs   4866      Saquon Barkley RB    NYG    24.2     3.2
#> 2 1            Paper Champs   1426      DeAndre Hopki… WR    ARI    28.9    17.2
#> 3 1            Paper Champs   4199      Aaron Jones    RB    GB     26.4    21.5
#> 4 1            Paper Champs   4037      Chris Godwin   WR    TB     25.1    31.7
#> 5 1            Paper Champs   4098      Kareem Hunt    RB    CLE    25.7    57  
#> 6 1            Paper Champs   5022      Dallas Goedert TE    PHI    26.3    73  
#> # … with 2 more variables: ecr_pos <dbl>, value_1qb <int>

Let’s do some team summaries now!

value_summary <- jml_values %>% 
  group_by(franchise_id,franchise_name,pos) %>% 
  summarise(total_value = sum(value_1qb,na.rm = TRUE)) %>%
  ungroup() %>% 
  group_by(franchise_id,franchise_name) %>% 
  mutate(team_value = sum(total_value)) %>% 
  ungroup() %>% 
  pivot_wider(names_from = pos, values_from = total_value) %>% 
  arrange(desc(team_value))

value_summary
#> # A tibble: 12 x 8
#>    franchise_id franchise_name    team_value    QB    RB    TE    WR    FB
#>    <chr>        <chr>                  <int> <int> <int> <int> <int> <int>
#>  1 3            solarpool              47364  7228 23817   732 15587    NA
#>  2 11           Permian Panthers       44237  3304 13669  7221 20043    NA
#>  3 4            The FANTom Menace      44108  2770  9588  2386 29364    NA
#>  4 8            Hocka Flocka           40355  1450 22172  3366 13367    NA
#>  5 1            Paper Champs           38714   384 20238  3466 14626    NA
#>  6 5            Barbarians             37521  6236 19624  6112  5549    NA
#>  7 12           jaydk                  36440  1885 18221  3510 12824    NA
#>  8 6            sox05syd               30297  3458  4217  8436 14186    NA
#>  9 9            ZPMiller97             27334  2414 12722  2141 10057    NA
#> 10 2            KingGabe               22835   101  6722    17 15995    NA
#> 11 7            Flipadelphia05         21424  2316  7972   167 10969    NA
#> 12 10           JMLarkin               16741   449   105   962 15225     0

So with that, we’ve got a team summary of values! I like applying some context, so let’s turn these into percentages - this helps normalise it to your league environment.

value_summary_pct <- value_summary %>% 
  mutate_at(c("team_value","QB","RB","WR","TE"),~.x/sum(.x)) %>% 
  mutate_at(c("team_value","QB","RB","WR","TE"),round, 3)

value_summary_pct
#> # A tibble: 12 x 8
#>    franchise_id franchise_name    team_value    QB    RB    TE    WR    FB
#>    <chr>        <chr>                  <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#>  1 3            solarpool              0.116 0.226 0.15  0.019 0.088    NA
#>  2 11           Permian Panthers       0.109 0.103 0.086 0.187 0.113    NA
#>  3 4            The FANTom Menace      0.108 0.087 0.06  0.062 0.165    NA
#>  4 8            Hocka Flocka           0.099 0.045 0.139 0.087 0.075    NA
#>  5 1            Paper Champs           0.095 0.012 0.127 0.09  0.082    NA
#>  6 5            Barbarians             0.092 0.195 0.123 0.159 0.031    NA
#>  7 12           jaydk                  0.089 0.059 0.115 0.091 0.072    NA
#>  8 6            sox05syd               0.074 0.108 0.027 0.219 0.08     NA
#>  9 9            ZPMiller97             0.067 0.075 0.08  0.056 0.057    NA
#> 10 2            KingGabe               0.056 0.003 0.042 0     0.09     NA
#> 11 7            Flipadelphia05         0.053 0.072 0.05  0.004 0.062    NA
#> 12 10           JMLarkin               0.041 0.014 0.001 0.025 0.086     0

Armed with a value summary like this, we can see team strengths and weaknesses pretty quickly, and figure out who might be interested in your positional surpluses and who might have a surplus at a position you want to look at.

Age

Another question you might ask: what is the average age of any given team?

I like looking at average age by position, but weighted by dynasty value. This helps give a better idea of age for each team - including who might be looking to offload an older veteran!

age_summary <- jml_values %>% 
  group_by(franchise_id,pos) %>% 
  mutate(position_value = sum(value_1qb,na.rm=TRUE)) %>% 
  ungroup() %>% 
  mutate(weighted_age = age*value_1qb/position_value,
         weighted_age = round(weighted_age, 1)) %>% 
  group_by(franchise_id,franchise_name,pos) %>% 
  summarise(count = n(),
            age = sum(weighted_age,na.rm = TRUE)) %>% 
  pivot_wider(names_from = pos,
              values_from = c(age,count))

age_summary
#> # A tibble: 12 x 12
#> # Groups:   franchise_id, franchise_name [12]
#>    franchise_id franchise_name    age_QB age_RB age_TE age_WR age_FB count_QB
#>    <chr>        <chr>              <dbl>  <dbl>  <dbl>  <dbl>  <dbl>    <int>
#>  1 1            Paper Champs        33     25.3   26.1   27.4     NA        3
#>  2 10           JMLarkin            28.3   27.2   25.8   25.2      0        3
#>  3 11           Permian Panthers    24.2   23     31.4   25.8     NA        4
#>  4 12           jaydk               31.5   25.4   25.7   27.8     NA        5
#>  5 2            KingGabe            26.7   22.4   26.6   22.6     NA        5
#>  6 3            solarpool           25.6   25.3   26.3   27.6     NA        4
#>  7 4            The FANTom Menace   27.7   24.4   24.2   26.5     NA        3
#>  8 5            Barbarians          25.2   24.6   28.7   26.7     NA        2
#>  9 6            sox05syd            23.7   23.7   26.9   25.2     NA        4
#> 10 7            Flipadelphia05      33     24.8   27.7   26.5     NA        2
#> 11 8            Hocka Flocka        31.4   24.1   24.9   23.3     NA        3
#> 12 9            ZPMiller97          24.5   23.6   26.4   25.2     NA        2
#> # … with 4 more variables: count_RB <int>, count_TE <int>, count_WR <int>,
#> #   count_FB <int>

Next steps

In this vignette, I’ve used ~three functions: ff_connect, ff_league, and ff_rosters. Now that you’ve gotten this far, why not check out some of the other possibilities?